Switching energy-delay of all spin logic devices
نویسندگان
چکیده
منابع مشابه
Current-limiting challenges for all-spin logic devices
All-spin logic device (ASLD) has attracted increasing interests as one of the most promising post-CMOS device candidates, thanks to its low power, non-volatility and logic-in-memory structure. Here we investigate the key current-limiting factors and develop a physics-based model of ASLD through nano-magnet switching, the spin transport properties and the breakdown characteristic of channel. Fir...
متن کاملMaterial Targets for Scaling All Spin Logic
All-spin logic devices are promising candidates to augment and complement beyond-CMOS integrated circuit computing due to non-volatility, ultra-low operating voltages, higher logical efficiency, and high density integration. However, the path to reach lower energy-delay product performance compared to CMOS transistors currently is not clear. We show that scaling and engineering the nanoscale ma...
متن کاملElectrical spin injection and detection in lateral all-semiconductor devices
Both electrical injection and detection of spin-polarized electrons are demonstrated in a single wafer allsemiconductor GaAs-based lateral spintronic device, employing p+Ga,Mn As /n+-GaAs ferromagnetic Esaki diodes as spin aligning contacts. Spin-dependent phenomena, such as spin precession and spin-valve effect, are observed in nonlocal signal and the measurements reveal the unusual origin of ...
متن کاملLow Delay Time All Optical NAND, XNOR and OR Logic Gates Based on 2D Photonic Crystal Structure
Background and Objectives: Recently, photonic crystals have been considered as the basic structures for the realization of various optical devices for high speed optical communication. Methods: In this research, two dimensional photonic crystals are used for designing all optical logic gates. A photonic crystal structure with a triangular lattice is proposed for making NAND, XNOR, and OR optica...
متن کاملEnergy-efficiency of all-optical transport through time-driven switching
Decreasing the Internet power consumption is a challenging issue. Optical transport networks employing the wavelength division multiplexing (WDM) technique have been identified as energy efficient solutions to face this issue, considering the expected high increase of Internet traffic. The authors study the energy efficiency of a recently-proposed switching technique for transport networks, the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Physics Letters
سال: 2011
ISSN: 0003-6951,1077-3118
DOI: 10.1063/1.3567772